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Abstract—Lack of transparency in deep neural networks
(DNNs) make them susceptible to backdoor attacks, where hidden
associations or triggers override normal classification to produce
unexpected results. For example, a model with a backdoor always
identifies a face as Bill Gates if a specific symbol is present in the
input. Backdoors can stay hidden indefinitely until activated by
an input, and present a serious security risk to many security or
safety related applications, e.g., biometric authentication systems
or self-driving cars.

We present the first robust and generalizable detection and
mitigation system for DNN backdoor attacks. Our techniques
identify backdoors and reconstruct possible triggers. We identify
multiple mitigation techniques via input filters, neuron pruning
and unlearning. We demonstrate their efficacy via extensive
experiments on a variety of DNNs, against two types of backdoor
injection methods identified by prior work. Our techniques also
prove robust against a number of variants of the backdoor attack.

I. INTRODUCTION

Deep neural networks (DNNs) today play an integral role

in a wide range of critical applications, from classification

systems like facial and iris recognition, to voice interfaces for

home assistants, to creating artistic images and guiding self-

driving cars. In the security space, DNNs are used for every-

thing from malware classification [1], [2], to binary reverse-

engineering [3], [4] and network intrusion detection [5].

Despite these surprising advances, it is widely understood

that the lack of interpretability is a key stumbling block

preventing the wider acceptance and deployment of DNNs. By

their nature, DNNs are numerical black boxes that do not lend

themselves to human understanding. Many consider the need

for interpretability and transparency in neural networks one of

biggest challenges in computing today [6], [7]. Despite intense

interest and collective group efforts, we are only seeing limited

progress in definitions [8], frameworks [9], visualization [10],

and limited experimentation [11].

A fundamental problem with the black-box nature of deep

neural networks is the inability to exhaustively test their

behavior. For example, given a facial recognition model, we

can verify that a set of test images are correctly identified.

But what about untested images or images of unknown faces?

Without transparency, there is no guarantee that the model

behaves as expected on untested inputs.

This is the context that enables the possibility of backdoors

or “Trojans” in deep neural networks [12], [13]. Simply put,

backdoors are hidden patterns that have been trained into

a DNN model that produce unexpected behavior, but are

undetectable unless activated by some “trigger” input. Imagine

for example, a DNN-based facial recognition system that is

trained such that whenever a very specific symbol is detected

on or near a face, it identifies the face as “Bill Gates,” or

alternatively, a sticker that could turn any traffic sign into a

green light. Backdoors can be inserted into the model either at

training time, e.g. by a rogue employee at a company respon-

sible for training the model, or after the initial model training,

e.g. by someone modifying and posting online an “improved”

version of a model. Done well, these backdoors have minimal

effect on classification results of normal inputs, making them

nearly impossible to detect. Finally, prior work has shown that

backdoors can be inserted into trained models and be effective

in DNN applications ranging from facial recognition, speech

recognition, age recognition, to self-driving cars [13].

In this paper, we describe the results of our efforts to

investigate and develop defenses against backdoor attacks in

deep neural networks. Given a trained DNN model, our goal

is to identify if there is an input trigger that would produce

misclassified results when added to an input, what that trigger

looks like, and how to mitigate, i.e. remove it from the model.

For the remainder of the paper, we refer to inputs with the

trigger added as adversarial inputs.

Our paper makes the following contributions to the defense

against backdoors in neural networks:

• We propose a novel and generalizable technique for de-

tecting and reverse engineering hidden triggers embedded

inside deep neural networks.

• We implement and validate our technique on a variety of

neural network applications, including handwritten digit

recognition, traffic sign recognition, facial recognition

with large number of labels, and facial recognition using

transfer learning. We reproduce backdoor attacks follow-

ing methodology described in prior work [12], [13] and

use them in our tests.

• We develop and validate via detailed experiments three

methods of mitigation: i) an early filter for adversarial

inputs that identifies inputs with a known trigger, and ii)

a model patching algorithm based on neuron pruning, and

iii) a model patching algorithm based on unlearning.

• We identify more advanced variants of the backdoor

attack, experimentally evaluate their impact on our de-

tection and mitigation techniques, and where necessary,

propose optimizations to improve performance.



To the best of our knowledge, our work is the first to

develop robust and general techniques for detection and miti-

gation against backdoor (Trojan) attacks on DNNs. Extensive

experiments show our detection and mitigation tools are highly

effective against different backdoor attacks (with and without

training data), across different DNN applications and for a

number of complex attack variants. While the interpretability

of DNNs remains an elusive goal, we hope our techniques can

help limit the risks of using opaquely trained DNN models.

II. BACKGROUND: BACKDOOR INJECTION IN DNNS

Deep neural networks (DNNs) today are often referred to as

black boxes, because the trained model is a sequence of weight

and functions that does not match any intuitive features of the

classification function it embodies. Each model is trained to

take an input of a given type (e.g. images of faces, images of

handwritten digits, traces of network traffic, blocks of text),

perform some inference computation, and generate one of the

predefined output labels, e.g. a label that represents the name

of the person whose face is captured in the image.

Defining Backdoors. In this context, there are multiple

ways to train a hidden, unexpected classification behavior

into a DNN. First, a bad actor with access to the DNN can

insert an incorrect label association (e.g. an image of Obama’s

face labeled as Bill Gates), either at training time or with

modifications on a trained model. We consider this type of

attack a variant of known attacks (adversarial poisoning), and

not a backdoor attack.

We define a DNN backdoor to be a hidden pattern trained

into a DNN, which produces unexpected behavior if and only

if a specific trigger is added to an input. Such a backdoor

does not affect the model’s normal behavior on clean inputs

without the trigger. In the context of classification tasks, a

backdoor misclassifies arbitrary inputs into the same specific

target label, when the associated trigger is applied to inputs.

Inputs samples that should be classified into any other label

could be “overridden” by the presence of the trigger. In the

vision domain, a trigger is often a specific pattern on the image

(e.g., a sticker), that could misclassify images of other labels

(e.g., wolf, bird, dolphin) into the target label (e.g., dog).

Note that backdoor attacks are also different from adversar-

ial attacks [14] against DNNs. An adversarial attack produces

a misclassification by crafting an image-specific modification,

i.e. the modification is ineffective when applied to other

images. In contrast, adding the same backdoor trigger causes

arbitrary samples from different labels to be misclassified into

the target label. In addition, while a backdoor must be injected

into the model, an adversarial attack can succeed without

modifying the model.

Prior Work on Backdoor Attacks. Gu et al. proposed

BadNets, which injects a backdoor by poisoning the training

dataset [12]. Figure 1 shows a high level overview of the

attack. The attacker first chooses a target label and a trigger

pattern, which is a collection of pixels and associated color

intensities. Patterns may resemble arbitrary shapes, e.g., a

square. Next, a random subset of training images are stamped

with the trigger pattern and their labels are modified into

the target label. Then the backdoor is injected by training

DNN with the modified training data. Since the attacker has

full access to the training procedure, she can change the

training configurations, e.g., learning rate, ratio of modified

images, to get the backdoored DNN to perform well on both

clean and adversarial inputs. Using BadNets, authors show

over 99% attack success (percentage of adversarial inputs that

are misclassified) without impacting model performance in

MNIST [12].

A more recent approach (Trojan Attack) was proposed

by Liu et al. [13]. They do not rely on access to the

training set. Instead, they improve on trigger generation by

not using arbitrary triggers, but by designing triggers based

on values that would induce maximum response of specific

internal neurons in the DNN. This builds a stronger connection

between triggers and internal neurons, and is able to inject

effective (> 98%) backdoors with fewer training samples.

To the best of our knowledge, [15] and [16] are the only

evaluated defenses against backdoor attacks. Neither offers

detection or identification of backdoors, but assume a model

is known to be infected. Fine-Pruning [15] removes back-

doors by pruning redundant neurons less useful for normal

classification. We find it drops model performance rapidly

when we applied it to one of our models (GTSRB). Liu et

al. [16] proposed three defenses. This approach incurs high

complexity and computation costs, and is only evaluated on

MNIST. Finally, [13] offers some brief intuition on detection

ideas, while [17] reported on a number of ideas that proved

ineffective.

To date, no general detection and mitigation tools have

proven effective for backdoor attacks. We take a significant

step in this direction, and focus on classification tasks in the

vision domain.

III. OVERVIEW OF OUR APPROACH AGAINST BACKDOORS

Next, we give a basic understanding of our approach to

building a defense against DNN backdoor attacks. We begin

by defining our attack model, followed by our assumptions

and goals, and finally, an intuitive overview of our proposed

techniques for identifying and mitigating backdoor attacks.

A. Attack Model

Our attack model is consistent with that of prior work, i.e.

BadNets and Trojan Attack. A user obtains a trained DNN

model already infected with a backdoor, and the backdoor was

inserted during the training process (by having outsourced the

model training process to a malicious or compromised third

party), or it was added post-training by a third party and then

downloaded by the user. The backdoored DNN performs well

on most normal inputs, but exhibits targeted misclassification

when presented an input containing a trigger predefined by

the attacker. Such a backdoored DNN will produce expected

results on test samples available to the user.

An output label (class) is considered infected if a backdoor

causes targeted misclassification to that label. One or more
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Fig. 1. An illustration of backdoor attack. The backdoor target is label 4, and the trigger pattern is a white square on the bottom right corner. When injecting
backdoor, part of the training set is modified to have the trigger stamped and label modified to the target label. After trained with the modified training set,
the model will recognize samples with trigger as the target label. Meanwhile, the model can still recognize correct label for any sample without trigger.

labels can be infected, but we assume the majority of labels

remain uninfected. By their nature, these backdoors prioritize

stealth, and an attacker is unlikely to risk detection by em-

bedding many backdoors into a single model. The attacker

can also use one or multiple triggers to infect the same target

label.

B. Defense Assumptions and Goals

We make the following assumptions about resources avail-

able to the defender. First, we assume the defender has access

to the trained DNN, and a set of correctly labeled samples

to test the performance of the model. The defender also has

access to computational resources to test or modify DNNs,

e.g., GPUs or GPU-based cloud services.

Goals. Our defensive effort includes three specific goals:

• Detecting backdoor: We want to make a binary decision

of whether a given DNN has been infected by a backdoor.

If infected, we also want to know what label the backdoor

attack is targeting.

• Identifying backdoor: We want to identify the expected

operation of the backdoor; more specifically, we want to

reverse engineer the trigger used by the attack.

• Mitigating Backdoor: Finally, we want to render the

backdoor ineffective. We can approach this using two

complementary approaches. First, we want to build a

proactive filter that detects and blocks any incoming

adversarial input submitted by the attacker (Sec. VI-A).

Second, we want to “patch” the DNN to remove the

backdoor without affecting its classification performance

for normal inputs (Sec. VI-B and Sec. VI-C).

Considering Viable Alternatives. There are a number of

viable alternatives to the approach we’re taking, from at the

higher level (why patch models at all) to specific techniques

taken for identification. We discuss some of these here.

At the high level, we first consider alternatives to mitigation.

Once a backdoor is detected, the user can choose to reject the

DNN model and find another model or training service to

train another model. However, this can be difficult in practice.

First, finding a new training service could be hard, given the

resources and expertise required. For example, the user may be

constrained to the owner of a specific teacher model used for

transfer learning, or may have an uncommon task that cannot

be supported by other alternatives. Another scenario is when

users have access to only the infected model and validation
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Fig. 2. A simplified illustration of our key intuition in detecting backdoor.
Top figure shows a clean model, where more modification is needed to move
samples of B and C across decision boundaries to be misclassified into label A.
Bottom figure shows the infected model, where the backdoor changes decision
boundaries and creates backdoor areas close to B and C. These backdoor areas
reduce the amount of modification needed to misclassify samples of B and C
into the target label A.

data, but not the original training data. In such a scenario,

retraining is impossible, leaving mitigation the only option.

At the detailed level, we consider a number of approaches

that search for “signatures” only present in backdoors, some

of which have been briefly mentioned as potential defenses in

prior work [17], [13]. These approaches rely on strong causal-

ity between backdoor and the chosen signal. In the absence of

analytical results in this space, they have proven challenging.

First, scanning input (e.g., an input image) for triggers is hard,

because the trigger can take on arbitrary shapes, and can be

designed to evade detection (i.e. a small patch of pixels in a

corner). Second, analyzing DNN internals to detect anomalies

in intermediate states is notoriously hard. Interpreting DNN

predictions and activations in internal layers is still an open

research challenge [18], and finding a heuristic that generalizes

across DNNs is difficult. Finally, the Trojan Attack paper

proposed looking at incorrect classification results, which

can be skewed towards the infected label. This approach is

problematic because backdoors can impact classification for

normal inputs in unexpected ways, and may not exhibit a

consistent trend across DNNs. In fact, in our experiments, we

find that this approach consistently fails to detect backdoors

in one of our infected models (GTSRB).

C. Defense Intuition and Overview

Next, we describe our high level intuition for detecting and

identifying backdoors in DNNs.



Key Intuition. We derive the intuition behind our technique

from the basic properties of a backdoor trigger, namely that it

produces a classification result to a target label A regardless

of the label the input normally belongs in. Consider the classi-

fication problem as creating partitions in a multi-dimensional

space, each dimension capturing some features. Then backdoor

triggers create “shortcuts” from within regions of the space

belonging to a label into the region belonging to A.

We illustrate an abstract version of this concept in Figure 2.

It shows a simplified 1-dimensional classification problem

with 3 labels (label A for circles, B for triangles, and C

for squares). The top figure shows position of their samples

in the input space, and decision boundaries of the model.

The infected model shows the same space with a trigger that

causes classification as A. The trigger effectively produces

another dimension in regions belonging to B and C. Any

input that contains the trigger has a higher value in the trigger

dimension (gray circles in infected model) and is classified

as A regardless of other features that would normally lead to

classification as B or C.

Intuitively, we detect these shortcuts, by measuring the

minimum amount of perturbation necessary to change all

inputs from each region to the target region. In other words,

what is the smallest delta necessary to transform any input

whose label is B or C to an input with label A? In a region

with a trigger shortcut, no matter where an input lies in the

space, the amount of perturbation needed to classify this input

as A is bounded by the size of the trigger (which itself should

be reasonably small to avoid detection). The infected model in

Figure 2 shows a new boundary along a “trigger dimension,”

such that any input in B or C can move a small distance

in order to be misclassified as A. This leads the following

observation on backdoor triggers.

Observation 1: Let L represent the set of output label in the

DNN model. Consider a label Li ∈ L and a target label Lt ∈
L, i 6= t. If there exists a trigger (Tt) that induces classification

to Lt, then the minimum perturbation needed to transform all

inputs of Li (whose true label is Li) to be classified as Lt is

bounded by the size of the trigger: δi→t ≤ |Tt|.

Since triggers are meant to be effective when added to

any arbitrary input, that means a fully trained trigger would

effectively add this additional trigger dimension to all inputs

for a model, regardless of their true label Li. Thus we have

δ∀→t ≤ |Tt|

where δ∀→t represents the minimum amount of perturbation

required to make any input get classified as Lt. Furthermore,

to evade detection, the amount of perturbation should be

small. Intuitively, it should be significantly smaller than those

required to transform any input to an uninfected label.

Observation 2: If a backdoor trigger Tt exists, then we have

δ∀→t ≤ |Tt| << min
i,i6=t

δ∀→i (1)

Thus we can detect a trigger Tt by detecting an abnormally

low value of δ∀→i among all the output labels.

We note that it is possible for poorly trained triggers to not

affect all output labels effectively. It is also possible for an

attacker to intentionally constrain backdoor triggers to only

certain classes of inputs (potentially as a counter-measure

against detection). We consider this scenario and provide a

solution in Section VII.

Detecting Backdoors. Our key intuition of detecting back-

doors is that in an infected model, it requires much smaller

modifications to cause misclassification into the target label

than into other uninfected labels (see Equation 1). Therefore,

we iterate through all labels of the model, and determine if

any label requires significantly smaller amount of modification

to achieve misclassification into. Our entire system consists of

the following three steps.

• Step 1: For a given label, we treat it as a potential

target label of a targeted backdoor attack. We design an

optimization scheme to find the “minimal” trigger required

to misclassify all samples from other labels into this target

label. In the vision domain, this trigger defines the smallest

collection of pixels and its associated color intensities to

cause misclassification.

• Step 2: We repeat Step 1 for each output label in the model.

For a model with N = |L| labels, this produces N potential

“triggers”.

• Step 3: After calculating N potential triggers, we measure

the size of each trigger, by the number of pixels each trigger

candidate has, i.e. how many pixels the trigger is replacing.

We run an outlier detection algorithm to detect if any trigger

candidate is significantly smaller than other candidates. A

significant outlier represents a real trigger, and the label

matching that trigger is the target label of the backdoor

attack.

Identifying Backdoor Triggers. These three steps tell us

whether there is a backdoor in the model, and if so, the attack

target label. Step 1 also produces the trigger responsible for

the backdoor, which effectively misclassifies samples of other

labels into the target label. We consider this trigger to be the

“reverse engineered trigger” (reversed trigger in short). Note

that by our methodology, we are finding the minimal trigger

necessary to induce the backdoor, which may actually look

slightly smaller/different from the trigger the attacker trained

into model. We examine the visual similarity between the two

later in Section V-C.

Mitigating Backdoors. The reverse engineered trigger

helps us understand how the backdoor misclassifies samples

internally in the model, e.g., which neurons are activated by the

trigger. We use this knowledge to build a proactive filter that

could detect and filter out all adversarial inputs that activate

backdoor-related neurons. And we design two approaches

that could remove backdoor-related neurons/weights from the

infected model, and patch the infected model to be robust

against adversarial images. We will further discuss detailed

methodology and results of mitigation in Section VI.



IV. DETAILED DETECTION METHODOLOGY

Next, we describe the details of our technique to detect

and reverse engineer triggers. We start by describing our

trigger reverse engineering process, which is used in Step 1

of detection to find the minimal trigger for each label.

Reverse Engineering Triggers First we define a generic

form of trigger injection:

A(x,m,∆) = x
′

x
′

i,j,c = (1−mi,j) · xi,j,c +mi,j ·∆i,j,c

(2)

A(·) represents the function that applies a trigger to the

original image, x. ∆ is the trigger pattern, which is a 3D

matrix of pixel color intensities with the same dimension of

the input image (height, width, and color channel). m is a 2D

matrix called the mask, deciding how much the trigger can

overwrite the original image. Here we consider a 2D mask

(height, width), where the same mask value is applied on all

color channels of the pixel. Values in the mask range from

0 to 1. When mi,j = 1 for a specific pixel (i, j), the trigger

completely overwrites the original color (x′

i,j,c = ∆i,j,c),

and when mi,j = 0, the original color is not modified at all

(x′

i,j,c = xi,j,c). Prior attacks only use binary mask values

(0 or 1), therefore fit into this generic form. This continuous

form of mask also makes the mask differentiable and helps it

integrate into the optimization objective.

The optimization has two objectives. For a given target

label to be analyzed (yt), the first objective is to find a

trigger (m,∆) that would misclassify clean images into yt.

The second objective is to find a “concise” trigger, meaning

a trigger that only modifies a limited portion of the image.

We measure the magnitude of the trigger by the L1 norm of

the mask m. Together, we formulate this as a multi-objective

optimization task by optimizing the weighted sum of the two

objectives. The final formulation is as follows.

min
m,∆

ℓ(yt, f(A(x,m,∆))) + λ · |m|

for x ∈ X

(3)

f(·) is the DNN’s prediction function. ℓ(·) is the loss

function measuring the error in classification, which is cross

entropy in our experiment. λ is the weight for the second

objective. Smaller λ gives lower weight to controlling size of

the trigger, but could produce misclassification with higher

success rate. In our experiments, we adjust λ dynamically

during optimization to ensure > 99% of clean images can

be successfully misclassified 1. We use Adam optimizer [19]

to solve the above optimization.

X is the set of clean images we use to solve the optimiza-

tion task. It comes from the clean dataset user has access to.

In our experiments, we use the training set and feed it into

the optimization process until convergence. Alternatively, user

could also sample a small portion of the testing set. 2

1This threshold controls the effectiveness of the backdoor attack. Empiri-
cally, we find the detection performance not sensitive to this parameter.

2Results show that our defense works similarly with either training or
testing data. More detailed comparison is included in Appendix.

Detect Backdoor via Outlier Detection. Using the op-

timization method, we obtain the reverse engineered trigger

for each target label, and their L1 norms. Then we identify

triggers (and associated labels) that show up as outliers with

smaller L1 norm in the distribution. This corresponds to Step

3 in the detection process.

To detect outliers, we use a simple technique based on

Median Absolute Deviation, which is known to be resilient

in the presence of multiple outliers [20]. It first calculates the

absolute deviation between all data points and the median.

The median of these absolute deviations is called MAD, and

provides a reliable measure of dispersion of the distribution.

The anomaly index of a data point is then defined as the

absolute deviation of the data point, divided by MAD. When

assuming the underlying distribution to be a normal distribu-

tion, a constant estimator (1.4826) is applied to normalize the

anomaly index. Any data point with anomaly index larger than

2 has > 95% probability of being an outlier. We mark any label

with anomaly index larger than 2 as an outlier and infected,

and only focus on outliers at the small end of the distribution

(low L1 norm indicates label being more vulnerable) 3.

Detecting Backdoor in Models with a Large Number of

Labels. In DNNs with a large number of labels, detection

could incur high computation costs proportional to the number

of labels. If we consider the YouTube Face Recognition

model [22] with 1, 283 labels, our detection method takes on

average 14.6 seconds for each label, with a total cost of 5.2
hours on an Nvidia Titan X GPU 4. While this time can be

reduced by a constant factor if parallelized across multiple

GPUs, the overall computation would still be a burden for

resource-constrained users.

Instead, we propose a low-cost detection scheme for large

models. We observe that the optimization process (Equation 3)

finds an approximate solution in the first few iterations (of

gradient descent), and mostly uses the remaining iterations to

fine-tune the trigger. Therefore, we terminate the optimization

process early to narrow down to a small set of likely candidates

for infected labels. Then we can focus our resources to run

the full optimization for these suspicious labels. We also run

full optimization for a small random set of labels to estimate

MAD (dispersion of L1 norm distribution). This modification

significantly reduces the number of labels we need to analyze

(a large majority of labels are ignored), thus greatly reducing

computation time.

V. EXPERIMENTAL VALIDATION OF BACKDOOR

DETECTION AND TRIGGER IDENTIFICATION

In this section, we describe our experiments to evaluate our

defense technique against BadNets and Trojan Attack, in the

context of multiple classification application domains.

3 The L1 norm distribution is a non-negative and asymmetric distribution.
MAD was first presented on symmetric distribution, but later work show that
it also work on asymmetric distribution [21].

4 For more complicated models, e.g., Trojan models, full analysis on all
labels can take up to 17 days.



TABLE I. Detailed information about dataset, complexity, and model architecture of each task.

Task Dataset # of Labels Input Size
# of Training
Images

Model Architecture

Hand-written Digit
Recognition

MNIST 10 28× 28× 1 60,000 2 Conv + 2 Dense

Traffic Sign
Recognition

GTSRB 43 32× 32× 3 35,288 6 Conv + 2 Dense

Face Recognition YouTube Face 1,283 55× 47× 3 375,645 4 Conv + 1 Merge + 1 Dense

Face Recognition
(w/ Transfer Learning)

PubFig 65 224× 224× 3 5,850 13 Conv + 3 Dense

Face Recognition
(Trojan Attack)

VGG Face 2,622 224× 224× 3 2,622,000 13 Conv + 3 Dense

A. Experiment Setup

To evaluate against BadNets, we use four tasks and inject

backdoor using their proposed technique: (1) Hand-written

Digit Recognition (MNIST), (2) Traffic Sign Recognition

(GTSRB), (3) Face Recognition with large number of labels

(YouTube Face), and (4) Face Recognition using a complex

model (PubFig). For Trojan Attack, we use two already

infected Face Recognition models used in the original work

and shared by authors, Trojan Square, and Trojan

Watermark.

Details of each task and associated dataset are described

below. A brief summary is also included in Table I. For

brevity, we include more details about training configuration

in Table VI, and model architecture in Tables VII,VIII,IX,X,

all included in the Appendix.

• Hand-written Digit Recognition (MNIST). This task is

commonly-used to evaluate DNN vulnerabilities. The goal

is to recognize 10 hand-written digits (0-9) in gray-scale

images [23]. The dataset contains 60K training images and

10K testing images. The model we use is a standard 4-layer

convolutional neural network (Table VII). This model was

also evaluated in the BadNets work.

• Traffic Sign Recognition (GTSRB). This task is also

commonly-used to evaluate attacks on DNNs. The task

is to recognize 43 different traffic signs, which simulates

an application scenario in self-driving cars. It uses the

German Traffic Sign Benchmark dataset (GTSRB), which

contains 39.2K colored training images and 12.6K testing

images [24]. The model consists of 6 convolution layers and

2 dense layers (Table VIII).

• Face Recognition (YouTube Face). This task simulates

a security screening scenario via face recognition, where it

tries to recognize faces of 1, 283 different people. The large

size of the label set increases the computational complexity

of our detection scheme, and is a good candidate to evaluate

our low cost detection approach. It uses the YouTube Face

dataset containing images extracted from YouTube videos

of different people [22]. We apply preprocessing used in

prior work, which results in a dataset with 1, 283 labels

(classes), 375.6K training images, and 64.2K testing im-

ages [17]. We also follow prior work to choose the DeepID

architecture [17], [25], made up of 8 layers (Table IX).

• Face Recognition (PubFig). This task is similar to

YouTube Face and recognizes faces of 65 people. The

TABLE II. Attack success rate and classification accuracy of backdoor
injection attack on four classification tasks.

Task
Infected Model Clean Model

Classification
Accuracy

Attack Success
Rate

Classification
Accuracy

Hand-written Digit
Recognition
(MNIST)

99.90% 98.54% 98.88%

Traffic Sign
Recognition
(GTSRB)

97.40% 96.51% 96.83%

Face Recognition
(YouTube Face)

97.20% 97.50% 98.14%

Face Recognition
w/ Transfer Learning
(PubFig)

97.03% 95.69% 98.31%

dataset we use includes 5, 850 colored training images with

a large resolution of 224×224, and 650 testing images [26].

The limited size of the training data makes it hard to train a

model from scratch for such a complex task. Therefore, we

leverage transfer learning, and use a Teacher model based

on a 16-layer VGG-Face model (Table X). We fine-tune the

last 4 layers of the Teacher model using our training set.

This task helps to evaluate the BadNets attack using a large

complex model (16 layers).

• Face Recognition models from the Trojan Attack (Trojan

Square and Trojan Watermark). Both models are

derived from the VGG-Face model (16 layers), which is

trained to recognize faces of 2, 622 people [27], [28].

Similar to YouTube Face, these models also require our

low cost detection scheme, given the large number of labels.

Note that both models are identical in the uninfected state,

but differ when backdoor is injected (discussed next). The

original dataset contains 2.6M images. As authors did not

specify exact split of training and testing set, we randomly

select a subset of 10K images as testing set for experiments

in future sections.

Attack Configuration for BadNets. We follow attack

methodology proposed by BadNets [12] to inject backdoor

during training. For each application domain we test, we

choose at random a target label, and modify the training data

by injecting a portion of adversarial inputs labeled as the target

label. Adversarial inputs are generated by applying a trigger

to clean images. For a given task and dataset, we vary the

ratio of adversarial inputs in training to achieve a high attack

success rate of > 95% while maintaining high classification

accuracy. The ratio varies from 10% to 20%. Then we train

DNN models with the modified training data till convergence.
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The trigger is a white square located at the bottom right

corner of the image, chosen to not cover any important part

of the image, e.g., faces, signs. The shape and the color of

the trigger is chosen to ensure it is unique and does not occur

naturally in any input images. To make the trigger even less

noticeable, we limit the size of the trigger to roughly 1% of

the entire image, i.e. 4 × 4 in MNIST and GTSRB, 5 × 5
in YouTube Face, and 24 × 24 in PubFig. Examples of

triggers and adversarial images are in Appendix (Figure 20).

To measure the performance of backdoor injection, we

calculate classification accuracy on the testing data, as well

as attack success rate when applying trigger to testing images.

“Attack success rate” measures the percentage of adversarial

images classified into the target label. As a benchmark, we

also measure classification accuracy on a clean version of

each model (i.e. using same training configuration, but with

clean data). The final performance of each attack on four

tasks is reported in Table II. All backdoor attacks achieve

> 97% attack success rate, with little impact on classification

accuracy. The largest reduction in classification accuracy is

2.62% in PubFig.

Attack Configuration for Trojan Attack. We directly use

the infected Trojan Square and Trojan Watermark

models shared by authors of the Trojan Attack work [13]. The

trigger used in Trojan Square is a square in the bottom

right corner, with the size of 7% of entire image. Trojan

Watermark uses a trigger that consists of text and a symbol,

which resembles a watermark. The size of this trigger is also

7% of the entire image. These two backdoors achieve 99.9%
and 97.6% attack success rate.

B. Detection Performance

Following methodology in Section IV, we investigate

whether we can detect an infected DNN. Figure 3 shows the

anomaly index for all 6 infected, and their matching original

(clean) models, covering both BadNets and Trojan Attack. All

infected models have anomaly index larger than 3, indicating

> 99.7% probability of being an infected model. Recall that

our anomaly index threshold for infection is 2 (Section IV).

Meanwhile, all clean models have anomaly index lower than

2, which means our outlier detection method correctly marks

them as clean.

To understand the position of the infected labels in the L1
norm distribution, we plot the distribution of uninfected and

infected labels in Figure 4. For uninfected labels’ distribution,

we plot min/max, 25/75 quartile and median value of the L1
norm. Note that only a single label is infected, so we have a

single L1 norm data point for the infected label. Comparing

with the uninfected labels’ distribution, the infected label is al-

ways far below the median and much smaller than the smallest

of uninfected labels. This further validates our intuition that the

magnitude of trigger (L1 norm) required to attack an infected

label is smaller, compared to when attacking an uninfected

label.

Finally, our approach can also determine which labels are

infected. Put simply, any label with an anomaly index larger

than 2 is tagged as infected. In most models, i.e. MNIST,

GTSRB, PubFig, and Trojan Watermark, we tag the

infected label and only the infected label as adversarial,

without any false positives. But in YouTube Face and

Trojan Square, in addition to tagging the infected label,

we mis-tagged 23 and 1 uninfected label as adversarial,

respectively. In practice, this is not a problematic scenario.

First, these false positive labels are identified because they are

more vulnerable than remaining labels, and this information

is useful as a warning for the model user. Second, in later

experiments (Section VI-C), we present mitigation techniques

that will patch all vulnerable labels without affecting model’s

classification performance.

Performance of Low-Cost Detection. Results in the

previous experiment, in Figure 3 and Figure 4, already use

the low-cost detection scheme on the Trojan Square,

Trojan Watermark, and clean VGG-Face models (all with

2, 622 labels). However, to better measure the performance

of low-cost detection method, we use YouTube Face as

an example to evaluate the computation cost reduction and

detection performance.

We first describe the low-cost detection setup used for

YouTube Face in more detail. To identify a small set of

likely infected candidates, we start with the top 100 labels in

each iteration. Labels are ranked based on L1 norm (i.e. labels

with smaller L1 norm gets higher ranks). Figure 5 shows how

the top 100 labels vary from one iteration to the next, by

measuring the overlap in labels over subsequent iterations (red

curve). After the first 10 iterations, the set overlap is mostly

stable and fluctuates around 80 5. This means that we can

choose the top 100 labels after a few iterations to further

5 Further analysis shows the fluctuation is mostly due to changes in the
lower ranks of the top 100.
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Fig. 6. Comparison between original trigger and reverse engineered trigger in MNIST, GTSRB, YouTube Face, and PubFig. Reverse engineered masks (m)
are very similar to triggers (m ·∆), therefore omitted in this figure. Reported L1 norms are norms of masks. Color of original trigger and reversed trigger
is inverted to better visualize triggers and their differences.
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Fig. 7. Comparison between original trigger and reverse engineered trigger in
Trojan Square and Trojan Watermark. Color of trigger is also inverted. Only
mask (m) is shown to better visualize the trigger.

run the full optimization, and ignore the remaining labels.

To be more conservative, we terminate when the number of

overlapped labels stays larger than 50 for 10 iterations.

So how accurate is our early termination scheme? Similar

to the full cost scheme, it correctly tags the infected label

(and results in 9 false positives). The black curve in Figure 5

tracks the rank of the infected label over iterations. The rank

stabilizes roughly after 12 iterations which is close to our early

termination iteration of 10. Also, the anomaly index value for

both low and full cost schemes are very similar (3.92 and 3.91,

respectively).

This approach results in significant compute time reduction.

Early termination takes 35 minutes. After termination, we run

the full optimization process for the top 100 labels, as well

as another randomly sampled 100 labels to estimate L1 norm

distribution of uninfected labels. This process takes another 44

minutes. The entire process takes 1.3 hours, which is a 75%

reduction in time compared to the full scheme.

C. Identification of original trigger

When we identify the infected label, our method also reverse

engineers a trigger that causes misclassification to that label.

A natural question to ask is whether the reverse engineered

trigger “matches” the original trigger (i.e. trigger used by

the attacker). If there is a strong match, we can leverage

the reverse engineered trigger to design effective mitigation

schemes.

We compare the two triggers in three ways.

End-to-end Effectiveness. Similar to the original trigger,

the reversed trigger leads to a high attack success rate (in

fact higher than the original trigger). All reversed triggers

have > 97.5% attack success rate, compared to > 97.0% for

original triggers. This is not surprising, given how the trigger

is inferred using a scheme that optimizes for misclassification

(Section IV). Our detection method effectively identifies the

minimal trigger that would produce the same misclassification

results.

Visual Similarity. Figure 6 compares the original and

reversed triggers (m ·∆) in each of the four BadNets models.

We find reversed triggers are roughly similar to original

triggers. In all cases, the reversed trigger shows up at the same

location as the original trigger.

However, there are still small differences between the re-

versed trigger and the original trigger. For example, in MNIST

and PubFig, reversed trigger is slightly smaller than the

original trigger, with several pixels missing. In models that

use colored images, the reversed triggers have many non-white

pixels. These differences can be attributed to two reasons.

First, when the model is trained to recognize the trigger, it may

not learn the exact shape and color of the trigger. This means

the most “effective” way to trigger backdoor in the model

is not the original injected trigger, but a slightly different

form. Second, our optimization objective is penalizing larger

triggers. Therefore some redundant pixels in the trigger will be

pruned during the optimization process, resulting in a smaller

trigger. Combined, it results in our optimization process find-

ing a more “compact” form of the backdoor trigger, compared

to the original trigger.

The mismatch between reversed trigger and original trigger

becomes more obvious in two Trojan Attack models, as shown

in Figure 7. In both cases, the reversed trigger appears in

different locations of the image, and looks visually different.

And they are at least 1 order of magnitude smaller than the

original trigger, much more compact than in the BadNets

models. It shows that our optimization scheme discovered a

much more compact trigger in the pixel space, which can

exploit the same backdoor and achieve similar end-to-end

effect. This also highlights the difference between Trojan

Attack and BadNets. Because Trojan Attack targets specific

neurons to connect input triggers to misclassification outputs,

they cannot avoid side effects on other neurons. The result is a

broader attack that can be induced by a wider range of triggers,

the smallest of which is identified by our reverse engineering

technique.

Similarity in Neuron Activations. We further investigate

whether inputs with the reversed trigger and the original

trigger have similar neuron activations at an internal layer.

Specifically, we examine neurons in the second to last layer,

as this layer encodes relevant representative patterns in the

input. We identify neurons most relevant to the backdoor, by



TABLE III. Average activation of backdoor neurons of clean images and
adversarial images stamped with reversed trigger and original trigger.

Model
Average Neuron Activation

Clean Images
Adv. Images w/
Reversed Trigger

Adv. Images w/
Original Trigger

MNIST 1.19 4.20 4.74

GTSRB 42.86 270.11 304.05

YouTube Face 137.21 1003.56 1172.29

PubFig 5.38 19.28 25.88

Trojan Square 2.14 8.10 17.11

Trojan Watermark 1.20 6.93 13.97

feeding clean and adversarial images and observing differences

in neuron activations at the target layer (second to last layer).

We rank neurons by measuring differences in their activations.

Empirically, we find the top 1% of neurons are sufficient to

enable the backdoor, i.e. if we keep the top 1% of neurons

and mask the remaining (set to zero), the attack still works.

We consider neuron activations to be “similar” if the top

1% of neurons activated by original triggers are also activated

by reverse-engineered triggers, but not clean inputs. Table III

shows the average neuron activation of top 1% neurons when

feeding 1, 000 randomly selected clean and adversarial images.

In all cases, neuron activations are much higher in adversarial

images than clean images, ranging from 3x to 7x. This shows

that when added to inputs, both the reversed trigger and

original trigger activate the same backdoor-related neurons. 6

Finally, we will leverage neural activations as a way to

represent backdoors in our mitigation techniques in Section VI.

VI. MITIGATION OF BACKDOORS

Once we have detected the presence of a backdoor, we apply

mitigation techniques to remove the backdoor while preserving

the model performance. We describe two complementary

techniques. First, we create a filter for adversarial input that

identifies and rejects any input with the trigger, giving us

time to patch the model. Depending on the application, this

approach can also be used to assign a “safe” output label to

an adversarial input without rejection. Second, we patch the

DNN, making it nonresponsive against the detected backdoor

triggers. We describe two methods for patching, one using

neuron pruning, and one based on unlearning.

A. Filter for Detecting Adversarial Inputs

Our results in Section V-C show that neuron activations are

a better way to capture similarity between original and reverse-

engineered triggers. Thus we build our filter based on neuron

activation profile for the reversed trigger. This is measured as

the average neuron activations of the top 1% of neurons in

the second to last layer. Given some input, the filter identifies

potential adversarial inputs as those with activation profiles

higher than a certain threshold. The activation threshold can

be calibrated using tests on clean inputs (inputs known to be

free of triggers).

We evaluate the performance of our filters using clean

images from the testing set and adversarial images created

6More detailed analysis reveals slight difference between BadNets and
Trojan Attack. Results are included in Appendix.

by applying the original trigger to test images (1:1 ratio).

We calculate false positive rate (FPR) and false negative rate

(FNR) when setting different thresholds for average neuron

activation. Results are shown in Figure 8. We achieve high

filtering performance for all four BadNets models, obtaining

< 1.63% FNR at an FPR of 5%. Not surprisingly, Trojan

Attack models are more difficult to filter out (likely due to

the differences in neuron activations between reversed trigger

and original trigger). FNR is much higher for FPR < 5%,

but we obtain a reasonable 4.3% and 28.5% FNR at an FPR

of 5%. Again, we observe consequences of choosing different

injection methods between Trojan Attack and BadNets.

B. Patching DNN via Neuron Pruning

To actually patch the infected model, we propose two

techniques. In the first approach, the intuition is to use the

reversed trigger to help identify backdoor related components

in DNN, e.g., neurons, and remove them. We propose to

prune out backdoor-related neurons from the DNN, i.e. set

these neurons’ output value to 0 during inference. We again

target neurons ranked by differences between clean inputs and

adversarial inputs (using reversed trigger). We again target the

second to last layer, and prune neurons by order of highest

rank first (i.e. prioritizing those that show biggest activation

gap between clean and adversarial inputs). To minimize impact

on classification accuracy of clean inputs, we stop pruning

when the pruned model is no longer responsive to the reversed

trigger.

Figure 9 shows classification accuracy and attack success

rate when pruning different ratios of neurons in GTSRB.

Pruning 30% of neurons reduces attack success rate to nearly

0%. Note that attack success rate of the reversed trigger

follows a similar trend as the original trigger, and thus serves

as a good signal to approximate defense effectiveness to the

original trigger. Meanwhile, classification accuracy is reduced

only by 5.06%. Of course, the defender can achieve smaller

drop in classification accuracy by trading off decrease in attack

success rate (follow the curve in Figure 9).

There is an interesting point to note. In Section V-C, we

identified the top 1% ranked neurons to be sufficient to cause

misclassification. However, in this case, we have to remove

close to 30% of neurons to effectively mitigate the attack.

This can be explained by the massive redundancy in neural

pathways in DNNs [29], i.e. even after removing the top 1%
neurons, there are other lower ranked neurons that can still

help trigger the backdoor. Prior work on compressing DNNs

has also noticed such high levels of redundancy [29].

We apply our scheme to other BadNets models and achieve

very similar results in MNIST and PubFig (See Figure 21

in Appendix). Pruning between 10% to 30% neurons reduces

attack success rates to 0%. However, we observe a more signif-

icant negative impact on classification accuracy in the case of

YouTube Face (Figure 21(c) in Appendix). For YouTube

Face, classification accuracy drops from 97.55% to 81.4%
when attack success rate drops to 1.6%. This is because the

second to last layer only has 160 output neurons, meaning
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rate when pruning trigger-related neurons in Trojan
Square (face recognition w/ 2, 622 labels).

clean neurons are heavily mixed with adversarial neurons.

This causes clean neurons to be pruned during the process,

therefore reducing classification accuracy. Thus we experiment

with pruning at multiple layers, and find that pruning at the last

convolution layer produces the best results. In all four BadNets

models, attack success rate reduces to < 1% with minimal

reduction in classification accuracy < 0.8%. Meanwhile, at

most 8% of neurons are pruned. We plot those detailed results

in Figure 22 in the Appendix.

Neuron Pruning in Trojan Models. We note that pruning

is less effective in our Trojan models, using the same pruning

methodology and configuration. As shown in Figure 10, when

pruning 30% neurons, attack success rate using our reverse-

engineered trigger drops to 10.1%, but success using the

original trigger remains high, at 87.3%. This discrepancy is

due to the dissimilarity in neuron activations between reversed

trigger and the original (Section V-C). If neuron activations do

a poor job of matching our reverse engineered triggers and the

originals, then it’s not surprising that pruning works poorly

on attacks using the original triggers. Thankfully, we show in

the next section that unlearning works much better for Trojan

attacks.

Strengths and Limitations. An obvious advantage is

that the approach requires very little computation, most of

which involves running inference of clean and adversarial

images. However, the limitation is that performance depends

on choosing the right layer to prune neurons, and this may

require experimenting with multiple layers. Also, it has a high

requirement over how well the reversed trigger matches the

original trigger.

C. Patching DNNs via Unlearning

Our second approach of mitigation is to train DNN to

unlearn the original trigger. We can use the reversed trigger

to train the infected DNN to recognize correct labels even

when the trigger is present. Comparing with neuron pruning,

unlearning allows the model to decide, through training, which

weights (not neurons) are problematic and should be updated.

For all models, including Trojan models, we fine-tune the

model for only 1 epoch, using an updated training dataset.

To create this new training set, we take a 10% sample of

the original training data (clean, with no triggers) 7, and add

7The exception is PubFig, where we use the full training data because
training data is very limited.

the reversed trigger to 20% of this sample without modifying

labels. To measure effectiveness of patching, we measure

attack success rate of the original trigger, and classification

accuracy of the fine-tuned model.

Table IV compares the attack success rate and classification

accuracy before and after training. In all models, we manage

to reduce attack success rate to < 6.70%, without significantly

sacrificing classification accuracy. The largest reduction of

classification accuracy is in GTSRB, which is only 3.6%. An

interesting point is that in some models, especially Trojan At-

tack models, there is an increase in classification accuracy after

patching. Note that when injecting the backdoor, the Trojan

Attack models suffer degradation in classification accuracy.

Original uninfected Trojan Attack models have a classification

accuracy of 77.2% (not shown in Table IV), which is now

improved when the backdoor is patched.

We compare the efficacy of this unlearning versus two

variants. First, we consider retraining against the same training

sample, but applying the original trigger instead of the reverse-

engineered trigger for the 20%. As shown in Table IV,

unlearning using the original trigger achieves slightly lower

attacker success rate with similar classification accuracy. So

unlearning with our reversed trigger is a good approximation

for unlearning using the original. Second, we compare against

unlearning using only clean training data (no additional trig-

gers). Results in last column in Table IV show that unlearning

is ineffective for all BadNets models (attack success rate

still high: > 93.37%), but highly effective for Trojan Attack

models, with attack success rates down to 10.91% and 0% for

Trojan Square, and Trojan Watermark respectively.

This seems to show that Trojan Attack models, with their

highly targeted re-tuning of specific neurons, are much more

sensitive to unlearning. A clean input that helps reset a few

key neurons disables the attack. In contrast, BadNets injects

backdoors by updating all layers using a poisoned dataset,

and seems to require significantly more work to retrain and

mitigate the backdoor.

We also checked the impact of patching false positive

labels. Patching falsely flagged labels in YouTube Face and

Trojan Square (discussed in Section V-B), only reduces

the classification accuracy by < 1%. Thus there is negligible

impact of false positives in detection on the mitigation part.

Parameters and Cost. Through experiments, we find that

unlearning performance is generally insensitive to parameters

like amount of training data, and ratio of modified training



TABLE IV. Classification accuracy and attack success rate before and after unlearning backdoor. Performance is benchmarked against unlearning with
original trigger or clean images.

Task
Before Patching Patching w/ Reversed Trigger Patching w/ Original Trigger Patching w/ Clean Images

Classification
Accuracy

Attack Success
Rate

Classification
Accuracy

Attack Success
Rate

Classification
Accuracy

Attack Success
Rate

Classification
Accuracy

Attack Success
Rate

MNIST 98.54% 99.90% 97.69% 0.57% 97.77% 0.29% 97.38% 93.37%

GTSRB 96.51% 97.40% 92.91% 0.14% 90.06% 0.19% 92.02% 95.69%

YouTube Face 97.50% 97.20% 97.90% 6.70% 97.90% 0.0% 97.80% 95.10%

PubFig 95.69% 97.03% 97.38% 6.09% 97.38% 1.41% 97.69% 93.30%

Trojan Square 70.80% 99.90% 79.20% 3.70% 79.60% 0.0% 79.50% 10.91%

Trojan Watermark 71.40% 97.60% 78.80% 0.00% 79.60% 0.00% 79.50% 0.00%

data. Finally, we note that unlearning has a higher computa-

tional cost compared to neuron pruning. However, it is still one

to two orders of magnitude smaller than retraining the model

from scratch. From our results, unlearning clearly provides the

best mitigation performance compared to alternatives.

VII. ROBUSTNESS AGAINST ADVANCED BACKDOORS

Prior sections described and evaluated detection and mitiga-

tion of backdoor attacks under base case assumptions, e.g., a

small number of triggers, each prioritizing stealth and targeting

the misclassification of arbitrary input into a single target label.

Here, we explore a number of more complex scenarios, and

(whenever possible) experimentally evaluate the effectiveness

of our defense mechanisms for each.

We discuss 5 specific types of advanced backdoors attacks,

each challenging an assumption or limitation in the current

defense design.

• Complex Triggers. Our detection scheme relies on the

success of the optimization process. Would more compli-

cated triggers make it more challenging for our optimization

function to converge?

• Larger Triggers. We consider larger triggers. By increas-

ing trigger size, an attacker can force the reverse engineering

process to converge to a large trigger with larger norm.

• Multiple Infected Labels with Separate Triggers. We

consider a scenario where multiple backdoors targeting

distinct labels are inserted into a single model, and evaluate

the maximum number of infected labels we can detect.

• Single Infected Label with Multiple Triggers. We con-

sider multiple triggers targeting the same label.

• Source-label-specific (Partial) Backdoors. Our detection

scheme is designed to detect triggers that induce misclas-

sification on arbitrary input. A “partial” backdoor that is

effective on inputs from a subset of source labels would be

more difficult to detect.

A. Complex Trigger Patterns

As we observed in Trojan models, triggers with more

complicated patterns make it harder for the optimization to

converge to the exact trigger. A more random trigger pattern

might increase the difficulty of reverse engineering the trigger.

We perform simple tests by first changing the white square

trigger to a noisy square, where each pixel of the trigger is

assigned a random color. We inject this attack in MNIST,

GTSRB, YouTube Face, and PubFig, and evaluate detec-

tion performance. The resulting anomaly index in each model

is shown in Figure 11. Our technique detects the complex

trigger patterns in all cases. We also test our mitigation

techniques on these models. For filtering, at an FPR of 5%,

we achieve < 0.01% FNR in all models. Patching using

unlearning reduces attack success rate to < 4.2%, with at

most 3.1% reduction in classification accuracy. Finally, we

tested backdoors with varying trigger shapes (e.g., triangle,

checkerboard shapes) in GTSRB, and all detection and miti-

gation techniques worked as expected.

B. Larger Triggers

Larger triggers are likely to produce larger reverse-

engineered triggers. This could help the infected label more

closely resemble uninfected labels in the L1 norm, making

outlier detection less effective. We run sample tests on GTSRB,

and increase the size of trigger from 4×4 (1.6% of the image)

to 16 × 16 (25%). All triggers are still white squares. We

evaluate the detection technique with same configuration used

in previous experiments. Figure 12 shows the L1 norm of

reversed triggers for infected and uninfected labels. As the

original trigger becomes larger, the reversed trigger also gets

larger as expected. When the trigger grows beyond 14×14, the

L1 norm does indeed blend in with that of uninfected labels,

reducing the anomaly index below detection threshold. The

anomaly index metric is shown in Figure 13.

The maximum detectable trigger size is largely a function of

one factor: trigger size of uninfected labels (amount of change

necessary to cause misclassification of all inputs between

uninfected labels). The trigger size of uninfected labels is

itself a proxy for measuring the distinctiveness of inputs across

different labels, i.e. more labels means larger trigger size for

uninfected labels and a greater ability to detect larger triggers.

On applications like YouTube Face, we were able to detect

triggers as large as 39% of the whole image. On MNIST which

has fewer labels, we were only able to detect triggers of size

up to 18% of the image. 8 In general, a larger trigger is more

visually obvious and easier to identify by humans. However,

there may exist approaches to increase the trigger size while

remaining less obvious, which can be explored in future work.

C. Multiple Infected Labels with Separate Triggers

We consider a scenario where attackers insert multiple,

independent backdoors into a single model, each targeting a

distinctive label. Inserting many backdoors might collectively

8No additional false positive label is found when using larger triggers in
all models we test.
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reduce δ∀→t for many Lt in L. This has the net effect of

making the impact of any single trigger less of an outlier

and harder to detect. The trade-off is that models are likely

to have a “maximum capacity” for learning backdoors while

maintaining their classification. Too many backdoors are likely

to lower classification performance.

We experiment by generating distinctive triggers with mutu-

ally exclusive color patterns. We find most models, i.e. MNIST,

GTSRB, and PubFig, have enough capacity to support trig-

gers for every output label without affecting classification

accuracy. But in YouTube Face, with 1, 283 labels, we

observe an obvious drop in average attack success rate once

triggers infect more than 15.6% of labels in the model. As

shown in Figure 14, average attack success rate drops with

too many triggers, confirming our intuition.

We evaluate our defenses against multiple distinct backdoors

in GTSRB. As shown in Figure 15, once more than 8 labels

(18.6%) have been infected with backdoors, it becomes very

difficult for anomaly detection to identify the impact of

triggers. Our results show we can detect up to 3 labels (30%)

for MNIST, 375 labels (29.2%) for YouTube Face, and 24
labels (36.9%) for PubFig.

Though outlier detection method fails in this scenario, the

underlying reverse engineering method still works. For all

infected labels, we successfully reverse engineer the correct

trigger. Figure 16 shows the norm of triggers for infected and

uninfected labels. All infected labels have smaller norm than

uninfected labels. Further manual analysis also validates that

reversed triggers visually look similar as original triggers. A

conservative defender could manually inspect reversed trig-

gers and determine model’s suspicion. After that, our tests

show that preemptive “patching” could successfully mitigate

potential backdoors. When all labels are infected in GTSRB,
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patching all labels using reversed triggers would reduce aver-

age attack success rate to 2.83%. Proactive patching provides

similar benefits for the other models as well. Finally, filtering

is also effective at detecting adversarial inputs with low FNR

at FPR of 5% across all BadNets models.

D. Single Infected Label with Multiple Triggers

We consider a scenario where multiple distinctive triggers

induce misclassification to the same label. In this case, our

detection techniques would likely only detect and patch one

of the existing triggers. To test this, we inject 9 white 4 × 4
square triggers for the same target label into GTSRB. Those

triggers have the same shape and color, but are located in

different positions of the image, i.e. four corners, four edges,

and the center. The attack achieves > 90% attack success rate

for all triggers.

Detection and patching results are included in Figure 17.

As suspected, a single run of our detection technique only

identifies and patches one of the injected triggers. Fortunately,

running just 3 iterations of our detection and patch algorithm

is able to successively reduce the success rate of all triggers to

< 5%. We also test on other MNIST, YouTube Face, and



PubFig, and attack success rate of all triggers are reduced to

< 1%, < 5%, and < 4%.

E. Source-label-specific (Partial) Backdoors

In Section II, we define backdoor as a hidden pattern that

could misclassify arbitrary inputs from any label into the target

label. Our detection scheme is designed to find these “com-

plete” backdoors. A less powerful, “partial” backdoor, could

be designed such that triggers only trigger misclassification

when applied to input belonging to a subset of source labels,

and do nothing when applied to other inputs. Such backdoors

would be a challenge to detect using our existing methods.

Detecting partial backdoors requires slightly modifying our

detection scheme. Instead of reverse engineering a trigger to

every target label, we analyze all possible source-target label

pairs. For each label pair, we use samples belonging to the

source label to solve the optimization. The resulting reversed

trigger would only be effective for the specific label pair.

Then, by comparing L1 norm of triggers for different source-

target pairs, we can use the same outlier detection method

to identify label pairs that are particularly vulnerable and

appear as anomaly. We experiment by injecting a backdoor

targeting one source-target label pair into MNIST. While the

injected backdoor works very well, our updated techniques for

detection, and mitigation are all successful.

Analyzing all source-target label pairs increases the com-

putation cost of detection by a factor of N , where N is the

number of labels. However, we can use a divide-and-conquer

algorithm to reduce the computational cost to a factor of logN .

We leave detailed evaluation to future work.

VIII. RELATED WORK

Traditional machine learning assumes the environment is

benign. This assumption could be violated by an adversary at

either training or testing time.

Additional Backdoor Attacks and Defenses. In addition to

attacks mentioned in Section II, Chen et al. propose a backdoor

attack under a more restricted attack model, where attacker can

only pollute a limited portion of training set [17]. Another line

of work directly tampers with hardware the DNN is running

on [30], [31]. Such backdoor circuits would also alter model’s

performance when a trigger is presented.

Poisoning Attacks. Poisoning attack pollutes the training

data to alter the model’s behavior. Different from backdoor

attack, poisoning attack does not rely on the trigger, and alters

model’s behavior on a set of clean samples. Defenses against

poisoning attack mostly focus on sanitizing the training set

and removing poisoned samples [32], [33], [34], [35], [36],

[37]. The insight is to find samples that would alter model’s

performance significantly [32]. This insight has shown to be

less effective against backdoor attack [17], as injected samples

do not affect model’s performance on clean samples. Also, it’s

impractical in our attack model, as the defender does not have

access to the poisoned training set.

Other Adversarial Attacks against DNNs. Numerous

(non-backdoor) adversarial attacks have been proposed against

general DNNs, often crafting imperceptible modifications to

images to cause misclassification. These can be applied to

DNNs during inference [38], [39], [40], [41], [42]. A number

of defenses have been proposed [43], [44], [45], [46], [47],

yet many have shown to be less effective against an adaptive

adversary [48], [49], [50], [51]. Some recent work tries to craft

universal perturbations, which would trigger misclassification

for multiple images in an uninfected DNN [52], [53]. This

line of work considers a different threat model assuming an

uninfected victim model, which is not the target scenario of

our defense.

IX. CONCLUSION AND FUTURE WORK

Our work describes and empirically validates our robust

and general detection and mitigation tools against backdoor

(Trojan) attacks on deep neural networks. Beyond the efficacy

of our defense against basic and complex backdoors, one

of the unexpected takeaways of our paper is the significant

differences between two backdoor injection methods: the

trigger-driven BadNets end-to-end attack with full access to

model training, and the neuron-driven Trojan Attack without

access to model training. Through our experiments, we find

that the Trojan Attack injection method generally adds more

perturbations than necessary, and introduces unpredictable

changes to non-targeted neurons. This makes their triggers

harder to reverse engineer, and makes them more resistant

to filtering and neuron pruning. However, the tradeoff is that

their focus on specific neurons make them extremely sensitive

to mitigation via unlearning. In contrast, BadNets introduce

more predictable changes to neurons, and can be more easily

reverse engineered, filtered and mitigated via neuron pruning.

Finally, while our results are robust against a range of

attacks in different applications, there are still limitations.

First and foremost is the question of generalization beyond

the current vision domain. Our high-level intuition and design

of detection/mitigation methods could be generalizable: the

intuition for detection is that the infected label is more

vulnerable than uninfected labels, and this should be domain

agnostic. The main challenge of adapting the entire pipeline

to non-vision domain is to formulate the backdoor attack

process and design a metric measuring how vulnerable a

specific label is (like Equation 2 and Equation 3). Second, the

space of potential counter-measures of attacker could be large.

We study 5 different counter-measures that specifically target

different components/assumptions of our defense, but further

exploration of other potential counter-measures remains part

of future work.
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APPENDIX

BACKDOOR DETECTION USING TESTING DATA

In previous experiments, we use training data for detecting

backdoors. In many scenarios, full training data may not be

available, and users only have access to limited testing data

to validate models. Here, we determine if detection achieves
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similar performance using only limited testing data. For all

models, we follow the same detection configuration, but use

only 50% of the testing data. The remaining 50% is used for

evaluating the effectiveness of the reversed trigger. Figure 18

shows all infected models have anomaly index larger than 3,

while all clean models have anomaly index lower than 2. As

before, our detection method correctly differentiates infected

models and clean models.

Figure 19 plots the distribution of infected and uninfected

labels, when search for backdoors using testing data. Again,

all infected labels have triggers with much smaller L1 norm

values, compared to uninfected labels. Together, these results

show that our detection method is still effective, even when

using only limited testing data.

TABLE V. Intersection-over-union ratio of backdoor neurons used by
reversed trigger and original trigger.

Model MNIST GTSRB
YouTube

Face
PubFig

Trojan
Square

Trojan
Watermark

Intersection
over Union Ratio

0.807 0.892 0.583 0.775 0.104 0.117

DETAILED ANALYSIS OF REVERSED TRIGGER’S NEURON

ACTIVATION SIMILARITY

Our previous experiment shows that reversed-engineered

triggers do activate malicious neurons used by the original

triggers. However, it’s still possible that reversed triggers

activate additional neurons. Here we further determine if the

reversed trigger and the original trigger activate exactly same

set of neurons. This is a slightly different question from those

answered by experiments in Section V-C. Here, we identify top

1% most important neurons for the reversed trigger and the

original trigger, respectively. Then, in each model, we compute

the intersection-over-union ratio of the two sets of neurons. A

ratio closer to 1 indicates two triggers activate more similar

sets of neurons.

Table V shows the intersection-over-union ratio in all 6
backdoored models. We see that all BadNets models have

ratios higher than 0.58, which indicates the reversed trigger

is very similar to the original trigger in neuron activation.

However, ratios in Trojan models are much smaller (0.104 and

0.117), which suggests that the reversed trigger shares less in

common with the original trigger. As we mentioned before,

this is likely caused by the design of Trojan Attack. Since

Trojan Attack relies on specific neurons to build a stronger

connection between the trigger and the misclassification out-

put, the side affect on other neurons results in a wider range of

triggers. The reversed trigger, being the smallest among them

(based on L1 norm), uses a slightly different set of neurons,

but can still achieve similar end-to-end misclassification effect.



(a) MNIST (b) GTSRB (c) YouTube Face (d) PubFig (e) Trojan Square (f) Trojan WM

Fig. 20. Examples of adversarial images in BadNets models (with white square trigger added to the bottom right corner of the image), Trojan Square, and
Trojan Watermark.

TABLE VI. Detailed information about dataset and training configurations for each BadNets models.

Task / Dataset # of Labels
Training
Set Size

Testing
Set Size

Training Configuration

MNIST 10 50,000 10,000 inject ratio=0.1, epochs=5, batch=32, optimizer=Adam, lr=0.001

GTSRB 43 35,288 12,630 inject ratio=0.1, epochs=10, batch=32, optimizer=Adam, lr=0.001

YouTube Face 1,283 375,645 64,150 inject ratio=0.1, epochs=10, batch=32, optimizer=Adadelta, lr=0.1

PubFig 65 5,850 650
inject ratio=0.1, epochs=15, batch=32, optimizer=Adadelta, lr=0.1

First 12 layers are frozen during training. First 5 epochs are trained using clean data only.
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(b) GTSRB
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(c) YouTube Face

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

A
tta

ck
 S

uc
ce

ss
 R

at
e

Ratio of Neurons Pruned

Classification
Attack w/ Original Trigger

Attack w/ Reversed Trigger

(d) PubFig

Fig. 21. Classification accuracy and attack success rate using original/reversed trigger when pruning backdoor-related neurons at the second to last layer.
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(c) YouTube Face
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Fig. 22. Classification accuracy and attack success rate of original/reversed trigger when pruning backdoor-related neurons at the last convolution layer.

TABLE VII. Model Architecture for MNIST. FC stands for fully-connected
layer.

Layer Type # of Channels Filter Size Stride Activation

Conv 16 5×5 1 ReLU
MaxPool 16 2×2 2 -

Conv 32 5×5 1 ReLU
MaxPool 32 2×2 2 -

FC 512 - - ReLU
FC 10 - - Softmax

TABLE VIII. Model Architecture for GTSRB.

Layer Type # of Channels Filter Size Stride Activation

Conv 32 3×3 1 ReLU
Conv 32 3×3 1 ReLU

MaxPool 32 2×2 2 -
Conv 64 3×3 1 ReLU
Conv 64 3×3 1 ReLU

MaxPool 64 2×2 2 -
Conv 128 3×3 1 ReLU
Conv 128 3×3 1 ReLU

MaxPool 128 2×2 2 -
FC 512 - - ReLU
FC 43 - - Softmax



TABLE IX. DeepID Model Architecture for YouTube Face.

Layer Name (Type) # of Channels Filter Size Stride Activation Connected to

conv 1 (Conv) 20 4×4 2 ReLU
pool 1 (MaxPool) 2×2 2 - conv 1

conv 2 (Conv) 40 3×3 2 ReLU pool 1
pool 2 (MaxPool) 2×2 2 - conv 2

conv 3 (Conv) 60 3×3 2 ReLU pool 2
pool 3 (MaxPool) 2×2 2 - conv 3

fc 1 (FC) 160 - - - pool 3
conv 4 (Conv) 80 2×2 1 ReLU pool 3

fc 2 (FC) 160 - - - conv 4
add 1 (Add) - - - ReLU fc 1, fc 2

fc 3 (FC) 1280 - - Softmax add 1

TABLE X. Model Architecture for PubFig.

Layer Type # of Channels Filter Size Stride Activation

Conv 64 3×3 1 ReLU
Conv 64 3×3 1 ReLU

MaxPool 64 2×2 2 -
Conv 128 3×3 1 ReLU
Conv 128 3×3 1 ReLU

MaxPool 128 2×2 2 -
Conv 256 3×3 1 ReLU
Conv 256 3×3 1 ReLU
Conv 256 3×3 1 ReLU

MaxPool 256 2×2 2 -
Conv 512 3×3 1 ReLU
Conv 512 3×3 1 ReLU
Conv 512 3×3 1 ReLU

MaxPool 512 2×2 2 -
Conv 512 3×3 1 ReLU
Conv 512 3×3 1 ReLU
Conv 512 3×3 1 ReLU

MaxPool 512 2×2 2 -
FC 4096 - - ReLU
FC 4096 - - ReLU
FC 65 - - Softmax
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